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ABSTRACT
In Expressions of Changemodifications to programs replace text files
as the primary building blocks of software development. This novel
approach yields structured historic information at arbitrary levels
of program granularity across the programming toolchain. In this
paper the associated questions of Programming Language Design
are explored. We do so in the context of s-expressions, creating a
modification-based infrastructure for languages in the Lisp family.
We provide a framework for evaluation of the relative utility of
different formalizations of program construction, which consists
of the following: first, a requirement for completeness, meaning
that a formalization of program construction should allow for the
transformation of any valid program into any other. Second, a
preference for succinctness over verbosity; succinctness of both of
the formalization itself and typical expressions in the formalization.
Third, a measure of the ability to clearly express intent. Fourth, a
description of three ways in which the means of combination of the
program itself and those of its means of construction may interact.
Finally, we give a particular example of a formalization and use the
provided framework to establish its utility.
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1 INTRODUCTION
A large part of software development is concerned with modifying
existing software, often over long time spans[6]. The associated
need for historic record keeping is reflected in the popularity of
Version Control Systems. In the mainstream approach, however,
such systems are retrofitted rather than integrated: text remains
the primary building block of program construction and the main
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interface shared across the tools in the development toolchain, such
as editors and interpreters; the history is managed separately by
the VCS.

An alternative approach is to take the modifications themselves
as the primary building blocks. The set of allowed modifications to
program structure is formalized, and such modifications are taken
as the inputs and outputs by all tools in the programming toolchain.
In short: program modification is reified. Experiments with this
approach are bundled in a project called Expressions of Change.

We expect that the availability of well-structured historic infor-
mation across the toolchain will prove invaluable when facing the
typical challenges of program modification. As part of the project
we have developed a prototype of an editor and a programming lan-
guage, and early experiments with these indicate that the expected
advantages will indeed materialize.

Setting out to reify program modification, one is immediately
faced with the rather obvious question: what does reified program
modification look like? What is the language with which a program-
mer can express, to the computer and other programmers alike, how
a program can be constructed or modified?What are the expressions
of change?

In more general terms, the question is: given some formalization
of program structure, what should the accompanying formalization
for program construction be? This is a non-trivial question, as the
number of possible such formalizations is infinite, even for a single
formalization of program structure, and any practical experiment
with reified program modification must choose only a single one.
This choice is thus a matter of programming language design.

This paper explores that design space for the single formalization
of program structure of s-expressions. S-expressions make for a
good initial testbed for this exploration for a number of reasons:
the simplicity of their definition, the typical explicitness of their
structure when pretty-printed, and the fact that the choice for s-
expressions ensures some immediate relevance of any findings for
languages in the Lisp family.

The relevance of this exploration for the project Expressions
of Change, as well as projects which take a similar approach, is
self-evident. As far as we know, questions of design of program
modification have not been previously described, which is not
surprising as they are directly tied to the original approach of
reification of program modification itself. The contributions of this
paper are the following:

• We develop a framework of criteria for comparison of differ-
ent formalizations of program modification (section 3) and
provide an overview of practical considerations in the design
of such formalizations (section 4).

• We present a minimal formalization of programmodification
(section 5) and show that the chosen formalization ranks
reasonably well given the criteria (sections 6 and 7).
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2 THE DESIGN SPACE: S-EXPRESSIONS
In this paper we explore the question of design of formalizations
of program construction in the context of a single formalization of
program structure, namely that of s-expressions. An s-expression
is recursively defined here as either:

• an atom, which is a symbol or number1
• a list of 0 or more s-expressions2

S-expressions are typically represented textually by printing the
atoms as-is, and the lists between regular parentheses ( and ) with
white space separating the elements of the list. Thus, the following
is the textual representation of an s-expression:
(+ (* 6 9) 12)

2.1 Why s-expressions?
The choice for s-expressions as an object of study is motivated by a
number of reasons.

First, their absolute minimalism: s-expressions can be both fully
defined and illustrated with an example in some ten lines of text.
Such a minimalistic definition of program structure allows for max-
imum focus on the subject at hand: that of program construction.
Further, a minimal formalization of program structure is a prerequi-
site for a minimal formalization of program construction, because
each special case of the program structure needs to be somehow
accounted for. Smaller formalizations of program construction are
preferable over larger ones in general (see section 3.2). For a first
exploration of the design space, which this paper represents, this is
even more strongly the case.

Second, the mapping between the structure of s-expressions
and their visual representation is very direct. The more explicitly
the structure is laid out on screen, the easier it is to understand
modifications in terms of that structure. When modifications are
put central, that is an important property.

Finally, the choice for s-expressions is practical, because s-expres-
sions (or some extension thereof) form the basic syntax of many
languages in the Lisp family, making it possible to use artifacts
produced by Expressions of Change in the practical environment of
an actual programming language. It also ensures relevance of the
findings of the project for any existing languages in that family.

2.2 Intuitions for formalizations
Having formalized s-expressions, and thus program structure, we
are ready to discuss formalizations of program construction. We
start by developing an intuition, using a practical example of an
expression of program construction in plain English:

Given the example expression given in section 2.1, do the following
3 things sequentially:

• remove the atom + from the root expression.
• insert a new atom, hello-world, as the first child of the
root.

1There is no generally accepted single definition of what constitutes an s-expression.
Instead, definitions vary, with support for a variety of possible atoms such as text, sym-
bols, integers and floating point numbers. We restrict ourselves to printable symbols
and numbers here without loss of generality.
2Lists are typically implemented using (nested) pairs; however, in this paper we shall
make no assumptions about their implementation.

• remove the atom 6 from the sub-expression (* 6 9).

The above list of bullets, although it is useful to provide an intuition
for languages of program construction, is not sufficiently formal
for our purposes. In particular, one of the explicit goals for such a
language is that it can serve as an input for automated processes,
i.e. as a shared interface across the development toolchain.

What are the elements that we might expect in any such formal-
ization? Again, let’s develop the intuition first. In general, we can
at least expect:

• Support for a number of different kinds of modification, e.g.
adding, updating, removing, copying and moving structures.

• Each kind of modification will be associated with further
information that is specific to it, i.e. for deletions it is suffi-
cient to specify a location only; for insertions we must also
specify what must be inserted.

• Specific kinds of structure may be tied to specific mecha-
nisms of construction. In the case of s-expressions: the ways
we can modify atoms are not the same as the ways we can
modify lists.

• A formalization of the order (if any) in which the operations
must take place

Please note that the first two bullet points together form a good fit
with Algebraic Data Types[7]: the different kinds can be represented
using Sum Types, the different attributes using Product Types. We
will occasionally use this fact as a notational shorthand below,
independent of actual concerns of implementation.

Having established what we can expect in a formalization of
program construction, let us develop an intuition for the associated
design space, in which we need to make decisions such as:

• What kinds of modification should be supported? For exam-
ple, is “updating” a special kind of operation, or is it enough
to have access to a combination of adding and removing
items?

• What are the relevant attributes for each kind of modifica-
tion? For example, when deleting an item, what is the best
way to formalize what is to be deleted? Should multiple such
formalizations be catered for simultaneously?

Finally, let us establish the fact that this design space is infinite,
by noticing that neither the space of kinds of modification, nor
the set of relevant attributes has an upper bound. For example, to
any formalization of program construction we can always add a
kind of modification that inserts a particular s-expression. Since the
number of s-expressions is infinite, we can thus create an infinite
number of special kinds of modification.

2.3 Terminology and notation
Having established these intuitions, we shall introduce a minimal
amount of terminology and notational convention. This is neces-
sary because, in contrast to formalizations of program structure,
in which terms such as grammar, term and parser have been well
established, formalizations of program construction have not been
well studied, and hence such terminology is not yet available. In
choosing this terminology, we have taken inspiration from musical
notation, being a real-world example of instructions for ‘construc-
tion’ rather than ‘structure’. We introduce the following terms:
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• A clef denotes a particular formalization of program con-
struction. The analog in program structure is a grammar:
just like a grammar describes what valid program syntax is, a
clef describes what the valid means of construction are. The
analog in natural language is a vocabulary: the clef defines
the valid words. The musical metaphor is be understood as
follows: just like a musical clef provides semantics for the
notes in a score, a clef in program construction provides the
semantics for its notes.

• A note denotes a specific kind of operation of construction,
such as “adding”, “removing” or “copying”. Borrowing from
the terminology of implementation: if a clef is implemented
as anAlgebraic Data Type, a note corresponds to a single data
constructor. The respective analogs are: a term in a grammar,
a word in a vocabulary. The term note is overloaded to also
mean an instance of a note, with given values for all attributes,
e.g. “delete the 2nd child”.

• To play a note is to apply it to an existing structure, yielding
a new structure.

• A score denotes a list of notes. To play a score is to play each
note in turn, leading to the step-wise construction of some
structure.

In this paper, we shall use s-expressions as ameans of notation for
notes. In particular, each notewill be denoted using a list-expression,
where the first element denotes its kind (corresponding to a data
constructor in an ADT) and further elements denote the values of
the attributes. The notation for a score is a list-expression of notes.
Thus, the following denotes a score of 2 notes:
(

(delete 3)
(delete 5)

)

Please note that such a choice of notation poses no restrictions on
implementation whatsoever, and is not mandated in any way by the
fact that the structure under modification is itself an s-expression. It
does, however, come with the benefit of directly suggesting a means
of implementation in Lisps. An advantage of such an implementa-
tion is further that it enables self-applicability, i.e. the modification
of notes in our clef in terms of that same clef.

The semantics of a clef are given in terms of a case-analysis
on its notes. We use the imperative style, that is, a formulation in
terms of how a given s-expression must be modified to reflect the
playing of a particular note. If needed, an equivalent definition in
the functional programming paradigm can be trivially derived.

3 A FRAMEWORK OF CRITERIA
In the previous section we have provided an overview of the infin-
itely many possible forms a clef may take. We shall now turn our
attention to a comparison between these forms. The goal is to be
able to pick a single clef which is shared as a common interface by
tools in the programming toolchain3.

3In fact, there being only a single clef is not a hard requirement, and future versions
of the project may very well support a small set of somewhat related clefs, each one
being used in a different part of the toolchain. For the utility of having a framework of
evaluation of clefs this makes no difference: such a framework may then be used to
select which clefs this small set consists of.

Because different clefs are not equally useful in meaningfully
expressing program modification, choosing a particular one is a
matter of design. It stands to reason that we need some mechanism
of evaluation of the utility of clefs, such that we may compare the
utility of different approaches and choose the best one. In the below
we present one such mechanism, i.e. a number of criteria that may
be used for evaluation of clefs, as well as arguments pertaining to
why these particular criteria are useful.

In the construction of this framework, we have in some cases
taken inspiration from the evaluation of the relative utility of pro-
gramming language features more generally, that is, outside the
scope of programmodification.Where this is the case, wemake sure
to highlight the aspects that are specific to program construction
rather than structure.

3.1 Completeness
The first criterion for a successful clef is that it is complete. Given
an arbitrary present structure it should be possible to reach an
arbitrary desired structure in a finite number of steps. We relax
this requirement somewhat in the context of structures that are
defined in terms of sum types, stating that it is sufficient to be able
to reach any structure defined using the same data constructor.
That is, for s-expressions, it is enough to be able to construct any
list-expression out of any list-expression, and any atom out of any
atom. We assume the utility of this property to be self-evident.

3.2 Clef size
Second, with regards to the size of the clef’s definition we make
the observation that, all other things being equal, smaller is better.

First, the size of the clef is reflected in the cost of implementation
of the automated processes programs that use it as its interface
(editors, tools for program analysis, compilers). The larger this
language, the larger the implementation-cost across the toolchain.

Second, larger clefs impose larger costs on their human users.
In the approach of this project the notes from the clef form the
primary building block of program construction. It follows that
explicit exposure of the clef to the end-user, the programmer, is a
design goal. If we want the programmer to be able to meaningfully
interact with elements of the clef, they must understand these
elements. The larger the clef’s definition, the larger the mental
burden of understanding it poses on the programmer.

Finally, a larger clef increases the risk of a distinction without a
difference: that multiple equivalent mechanisms exist to construct
the same result, even in cases when there is no meaningful under-
lying reason for this. Such distinctions serve only to confuse, and
must be avoided.

The preference for small definition size is entirely analogous
with the same preference in programming language design proper.
However, it’s worth noting that, with respect to text based pro-
gramming languages, the clef introduces an additional layer of
complexity on tools and programmers alike. Thus, the pressure to
keep it small is increased.

3.3 Typical expressions’ size
A clef that allows for concise expression of typical modifications to
programs is to be preferred over one that does not. Please note that
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this is a separate concern from the one in the previous subsection,
analogously to the cases of both programming language design and
natural language, in which the size of the vocabulary is distinct
from the size of sentences formed with that vocabulary, and in
which the two are often inversely related.

In terms of automated tooling, larger expressions will typically
incur some cost on storage and performance. However, this cost is
expected to generally negligible and the size of typical expressions
has no implication on implementation cost, which is tied strictly
to definition size. The greatest cost of large expressions is thus in-
curred on the programmer, who will spend more time constructing,
reading and understanding such expressions.

One important thing to note in the above criterion is that it as-
sumes some knowledge of what “typical modifications to programs”
are. That is, to a large degree, an empirical question.

3.4 Preservation of intent
A fourth desirable quality in a clef is for it to allow for clear expres-
sion of programmer intent. Here, again we take inspiration from
the design of computer programs and programming languages, in
which clear communication of intent is a desirable quality[2, 4, 9].
In that context, the concept of programmer intent is more or less un-
derstood: it denotes what the programmer wants a particular part
of the program to achieve, and the mechanisms for them to commu-
nicate this intent with others. But what do we mean when talking
about programmer intent in the context of program construction?

We mean approximately the following: when a programmer
modifies the program, they typically do not do so at random, but
with the intent to achieve a particular desired result. More often
than not, this is achieved in a number of steps — whereby each step
has some meaning to the programmer. Such a step-wise approach
might even be reflected in a todo file or a piece of paper on which the
steps are crossed off one by one. Similarly, in a pair programming
session, one programmer may explain to another what they need to
do next in a number of steps. The more closely the expressions built
using a particular clef resemble lines in a todo file or utterances in
a pair programming session, the better they express original intent.

Why do we think this is important? A central hypothesis of
Expressions of Change is that, by having access to ubiquitous well-
structured historical information, programs can be more easily
understood. Such understanding is much easier to achieve if those
histories are expressed in ways that are close to the thought-process
of the original programmer.

As an example, consider the programmer goal of moving the
method get_widget() from class Foo to class Bar. A clef that al-
lows for expression of this goal using a single-note called “move”
reveals more about the original intent than one that expresses the
same modification using two separate and unrelated actions called
“insert” and “delete”.

A final piece of evidence for the importance of expression of
intent in the context of program modification is presented by the
currently accepted best practices in Version Control Systems, which
are in favor of expressing intent through both mechanisms. In
the language of Version Control: “One commit, one change” and
“Writing good commit messages”.

We make a distinction here between two different mechanisms
through which intent may be expressed. First, there is the greater
or lesser ability to express intent directly in terms of the notes of
the clef, as in the example above. Second, some clefs may allow
for expression of intent through informal comments in natural
language.

3.5 Means of combination
A final desirable quality in a clef is that it allows for meaningful
means of combination. Here, again, we take inspiration from the
evaluation of expressiveness of programming languages per se,
which may be approached using the question “What are the means
of combination?”[1, 10, p. 4]

The importance of this question is a direct consequence of human
nature. Human beings, including programmers, can typically hold
approximately 7 items in their mind in an active, readily available
state at any given time[11]. Thus large problems are approached by
dividing them into parts, and combining those parts, and programs
are no exception. Examples of such means of division and combi-
nation are modules, procedures, expressions, classes and methods. It
is in terms of such parts, and the way that they are combined, that
programs are understood.

The central hypothesis of Expressions of Change is that programs
may also be understood in their historical context. How do these
two mechanisms of creating understanding interact? How does the
concept of meaningful composition interact with clef-design? We
distinguish 3 questions, for 3 different kinds of interaction.

First, what are the means of combination within the clef itself?
Can its notes be meaningfully combined at all? Moreover, can the
results be used as the elements in further combinations? That is,
does this mechanism of combination form a closure, and thus the
ability to form arbitrarily structured hierarchical histories?

The second question we can ask of a clef is the following: does its
usage enable a meaningful relationship between the program com-
position and its history? As noted, programs are typically composed
of modules, classes, procedures etc. Is the historical information
available for each such part? If so, this enables the programmer
to get a historic view at any level of the program hierarchy, such
that they may get an answer to each of the questions “what’s the
history of my program?”, “what’s the history of this module?” and
“what’s the history of this expression?” equally.

Third, is there a meaningful relationship between the program’s
composition and the composition of the program’s history? Do
the histories of parts of the program relate to the histories of their
sub-parts? If they do, a programmer may arbitrarily switch between
2 modes while navigating: that of program structure (space) and
program history (time).

4 PRACTICALITIES OF DESIGN
Before introducing the clef proper, we present some further consid-
erations of clef design. These cannot not included in the framework
from the previous section, because the trade-offs associated with
any particular approach do not obviously point towards a particular
design. Nevertheless, they do represent design decisions and are
therefore relevant to discuss.
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4.1 Sum type structure
An s-expression, as defined in section 2, is precisely one of two
things: an atom or a list, i.e. it is defined as a sum-type. The fact that
the way we can modify each of these two things is different has
immediate consequences for an approach to structuredmodification.
For lists, for example, we can reasonably speak about the insertion
of an element, but for an atom such a modification is meaningless
because an atom has no elements4.

For a clef of s-expressions, the practical result is that some of its
notes will be playable exclusively on list-expressions, and others ex-
clusively on atoms5. To play such notes on a structure of the wrong
kind, e.g. to add a child to an atom, is not allowed by definition6.

4.2 Initial notes
As noted in section 2.3, notes are typically defined in terms of
modification of an existing s-expression. When a note is played as
the first note in the score, this raises the questionwhat the existing s-
expression to modify would be. We present three possible answers:

• We choose a particular single structure, such as the empty
list-expression (), as the initial structure as a matter of defi-
nition.

• We specify the initial structure explicitly as needed, i.e. when
playing a score; we keep track of what the initial structure
is in some location external to the score, i.e. as “metadata”

• We alter the definition of the semantics of notes slightly,
such that special semantics may be assigned in case they are
played as the initial note in a score. Further, we assign such
special semantics to one or more notes in the clef. That is,
the initial structure is defined to be some special sentinel
value denoting nothingness, and one or more notes are de-
fined to be construct a particular s-expression out of such
nothingness.

All of these approaches have some drawbacks: the first elevates
one particular kind of structure over the others by making it the
initial one, even if no natural order exists. This lack of natural or-
der applies to s-expressions: it isn’t quite clear whether we should
consider list-expressions or atoms to be the most natural initial
s-expression. In the second approach, the task of identifying the
initial structure is pushed out of the score, but we must still keep
track of it somehow. In practice, this means we need to associate
this information with all children-creating notes, i.e. push the in-
formation “one level up”. In some sense this moves the problem
elsewhere rather than solving it. The third approach introduces a
degree of asymmetry in the clef: some notes, but not all, may be
used as the initial note.

For clefs of s-expressions in particular, the drawbacks of the
third approach seem to be most limited, hence we have chosen it.
4We take the indivisibility of atoms to be their defining property by definition (from
Greek – the prefix “a” meaning not and the word “tomos” to cut). The fact that an atom
may be represented as a string of textual characters is, in this view, an implementation
detail that is encapsulated.
5This conclusion does not generalize to clefs for any structure which happens to be
defined as a sum-type: if various kinds of structure are similar in the way they can be
modified a single note may be applicable to more than a single kind of structure.
6This is not to say that any note for list-expressions is playable on any list-expression,
as the set of playable notes may be constrained by properties of the list-expression its
played on. For example: removal of the 3rd element of a list is only possible if the list
has such an element.

In the chosen approach we introduce one or more special notes for
structure-creation, which leads to a final question of clef-design:
should playing such notes as anything but the initial note be an
error, or should it have the effect of transforming whatever previous
structure there was into the initial structure of the designated kind?
We have chosen to disallow such midway reinitializations, judging
that there cannot be a meaningful historical connection between
an atom and a list-expression. Again, this decision may or may not
generalize to other types of structures than s-expressions.

5 A MINIMAL CLEF
In this section, we present a minimal clef for s-expressions. As
noted in section 2.3, we use the imperative style for a description
of the semantics. For each item, any expectations about the previ-
ous s-expression are noted first. Any non-defined behavior such
as playing a note on the wrong kind of s-expression, playing an
initial note non-initially and vice versa is considered disallowed by
definition.

• (become-atom ⟨atom⟩) — initial note only — constructs the
given atom out of nothing.

• (set-atom ⟨atom⟩) — playable on atoms — modifies the
atom into the given atom.

• (become-list) — initial note only — constructs an empty
list expression out of nothing.

• (insert ⟨index⟩ ⟨score⟩) — playable on list-expressions —
constructs a new s-expression by playing all notes in the
given score in order, and inserts this newly constructed s-
expression as a new child element at the provided index7.

• (delete ⟨index⟩) — playable on list-expressions — deletes
the element at the index.

• (extend ⟨index⟩ ⟨score⟩) — playable on list-expressions
— constructs a new s-expression by playing the score, us-
ing the child currently at the provided index as an initial
s-expression, and replacing the child with the result.

• (chord ⟨score⟩) — playability depending on the first note of
the provided score — plays the provided score sequentially.

5.1 Example usage
Consider the following score:
(

(become-list)
(insert 0 (

(become-list)
(insert 0 ((become-atom *)))
(insert 1 ((become-atom 6)))

))
(insert 0 ((become-atom +)))
(insert 2 ((become-atom 12)))
(extend 1 (

(insert 2 ((become-atom 9)))
))

)

The stepwise construction of an s-expression according to this score
is summarized in the table below.
7Indices are, of course, 0-based[3].
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lines note result
2 (become-list) ()
3 - 7 (insert 0 (... * ... 6 ...)) ((* 6))
8 (insert 0 ((become-atom +))) (+ (* 6))
9 (insert 2 ((become-atom 12))) (+ (* 6) 12)
10 - 12 (extend 1 (... 9 ...)) (+ (* 6 9) 12)

5.2 Chords
Chords may be used to hierarchically structure a score, as in the
example below. Please note that grouping notes by means of chords
does not alter the semantics of construction; as such, the below
example may be flattened into a single score without altering what
s-expression would be constructed as a result.
(

(become-list)
(chord (

(insert 0 ((become-atom +)))
(insert 1 ((become-atom 3)))
(chord (

(insert 2 ((become-atom 8)))
(insert 3 ((become-atom 4)))

))
))

)

6 EVALUATION OF UTILITY
In this section we examine the provided clef in terms of the first
four means of evaluation of the framework; that is in terms of
completeness (3.1), clef size (3.2), succinctness of expression (3.3)
and means of expression of intent (3.4).

We first note that the clef is complete, i.e. it may be used to
construct arbitrary list-expressions from arbitrary list-expressions
(although, because reinitializations have been disallowed as per
section 4.2, it is not the case that arbitrary atoms can be created from
arbitrary list-expressions and vice versa). A trivial, albeit inefficient,
mechanism to do so is: first, construct the empty list-expression
from the given list-expression by deleting the first element until no
more child-elements exist. Then, from the empty list-expression,
construct the desired list-expression by, for each child, creating
the score that constructs it recursively, and inserting it. Arbitrary
atoms can be created trivially by the clef’s definition.

Regarding the size of the presented clef, we note that at present
no alternative exists, which is to say that a quantitative comparison
is hard to make. We thus content ourselves with the observations of
some basic facts: the clef has a total of seven notes. Two of these are
specific to atoms, four to list-expressions and one is a generic means
of combination. With respect to the number of types of expressions
(atoms and lists), this represents a factor 3.5. In any case, seven is
by no means the minimal amount, which is one8. We must point
out though, that such a reduction of clef-size comes at considerable
cost in terms of the other criteria of evaluation.

The following two criteria, namely whether the clef can be
used for succinct expression of typical program modification, and
8The clef with the single note become, which takes an s-expression and changes the
entire s-expression under consideration into the given s-expression is an example of
such a 1-note clef.

whether it allows for clear expression of programmer intent are
discussed together below. As noted, those criteria imply further
questions which can only be answered empirically: what is the
nature of typical program modification, and what is the kind of in-
tent that a programmer typically wants to reveal? To answer these
questions, we have implemented, as part of the project “Expressions
of Change”, a prototype of an editor that implements the given clef.
Informal experiments indicate that the presented clef scores quite
well.

In addition to this empirical observationwith an actual prototype,
we make some observations about the general nature of editing.
The most basic ways to interact with any kind of data, are to add,
update and delete9. The presented clef provides direct support for
all of these; that is: an edit-session comprising of such actions alone
can be expressed succinctly, and without loss of intent. However,
these are by no means the only operations available in typical (text)
editors. We mention a few:

• moving pieces of text around
• copy-pasting
• search and replace
• advanced code refactoring

For such operations, no direct counterparts are available in the
clef. However, annotated chords may be used to preserve, to some
degree, expression of intent. For example, a move might be ex-
pressed as a single chord that deletes a sub-expression in one place,
and inserts the score representing the moved sub-expression’s
method of construction elsewhere.

7 MEANS OF COMBINATION
Finally, we turn our attention to the means of combination. In
section 3.5, we distinguished 3 questions about the interaction
between means of combination of structure and construction. Here
we shall evaluate the presented clef in terms of those 3 questions.

7.1 Combining notes with chords
First, what are the means of combination within the clef itself? The
most straightforward combination is to take a linear sequence of
changes. Such a sequence is part of our definition; we’ve called this
a score.

A more profound means of combination is provided by the note
chord: it combines multiple notes, in the form of a score, into a
single note. Thus, it can be used to form arbitrarily structured
hierarchical histories.

The practical use of this ability is to structure a stream of changes
into time-wise “chapters” and “sub chapters” for the human reader,
i.e. to express intent. For example, the introduction of a new fea-
ture may require the refactoring of a certain part of the program,
which is in turn an operation that consists of a number of further
restructurings. Chords allow for a programmer to express precisely
such a hierarchical structuring of history.

9 Reflected, for example, in the acronym CRUD[8]. (Please note that the R in that
acronym, for Read, is not a data-altering operation and has therefore no relevance to a
clef).
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7.2 Combining structure and construction
Postponing the discussion of the second question for a moment, we
turn our attention to the third: is there a meaningful relationship
between the program’s composition and the composition of the
program’s history?

Please note that the means of combination for the program struc-
ture under consideration, s-expressions, are list-expressions: list-
expressions combine s-expressions into new s-expressions. As an
instance of this, consider the s-expression constructed in section
5.1. It is a list-expression consisting of the further s-expressions +,
(* 6 9) and 12.

As we have seen in the previous section, the most basic mecha-
nism for composition of program construction is the score. In the
presented clef scores show up as an attribute to the 3 notes insert,
extend and chord.

What, then, is the relationship between the scores of list-expressions,
and the scores of the s-expressions that they are composed of? In
terms of the provided example: what is the relationship between
the score for the construction of (+ (* 6 9) 12) and the respective
scores for the construction of its parts? In particular: can the listing
in section 5.1, which corresponds to the score of the expression
as a whole, be used to reconstruct the scores for that expression’s
sub-expressions, such as (* 6 9)?

Indeed it can be. The key observation is that all mechanisms that
affect sub-expressions, namely insert and extend, are expressed in
terms of a score that describes modifications to the sub-expression.
In general, the process for extracting a lower-level score is to ex-
tract the relevant scores from the higher level expressions and
concatenate them.

For the atoms + and 12, the result is somewhat trivial: their his-
tories consist solely of those atoms coming into being. The history
of the list-expression (* 6 9) is more interesting; it can be con-
structed by concatenating the scores as found on lines 4 – 6 and 11,
resulting in the following score10:
(

(become-list)
(insert 0 ((become-atom *)))
(insert 1 ((become-atom 6)))
(insert 2 ((become-atom 9)))

)

This is precisely what we were looking for: a meaningful rela-
tionship between the program’s composition and the composition
of the program’s history.

Incidentally, this relationship also implies a positive answer to
the second question: it enables the programmer to get a historic
view at any level of the program hierarchy. Thus, our ratherminimal
clef has meaningful composition on all 3 levels.

8 FUTUREWORK
The central hypothesis of Expressions of Change is that structured
historic information at arbitrary levels of program granularity is
10 The fact that the notes (insert 0 ...) and (extend 1 ...) are indeed modifying the same
sub-expression might not be immediately apparent because the indices differ. This
shift in indices is caused by an intermediate insertion at index 0 on line line 8. In the
UI of practical applications, the connection between such apparently unrelated notes
may be clarified by using some unique and unchanging identifier, such as the order of
creation of a child.

extremely useful in the software development practice. As part
of the project we have built a prototype of an editor and a small
interpreter of a subset of Scheme. Experiments with this editor
in an informal setting confirm the practical applicability of the
findings in this paper. However, to substantiate the central claim,
much work remains to be done. In this work, we may distinguish
between production and consumption of the clef. That is, first
further experimentation with the editor to ensure a fluent editing
experience, and second, experimentation with the utilization of this
structured information in the rest of the toolchain. An example of
the latter is to approach various forms of static analysis from the
perspective of program construction, that is: incrementally.

In this paper we have explored formalization of program con-
struction for a single particular formalization of program struc-
ture, namely that of s-expressions. Whether it is possible to define
clefs of practical utility for arbitrarily complex formalizations of
program structure is an open question, although there are some
reasons to believe that it isn’t. In particular, the arguments in favor
of s-expressions as an object of study, presented in section 2.1, do
not generally extend to arbitrary definitions of program structure.
Our conclusion is that future languages should be designed with
structured modification in mind.

In the prototype of the editor, user actions correspond directly to
notes in the clef, and its output is a score representing the actual edit-
session. However, programming is to some degree an exploratory
activity and an actual edit-session may contain many dead ends. A
log including all those dead ends is not the clearest possible way to
communicate intent. Thus, there is likely a need for an extra step,
that is analogous with a commit in a VCS, in which some of reality’s
details are hidden in the interest of clarity. We imagine that various
automated tools will be usefull in this step, e.g. to automatically
detect such dead ends and prune them as required.

The properties of formalizations of program construction in the
context of a collaborative programming effort have not yet been
researched. Briefly, we can say the following: one key question
when collaborating is how the diverging work of multiple program-
mers can be joined together with some degree of automation (that
is: “merging”). With respect to the mainstream approach, Version
Control of text files, our approach creates both advantages and
challenges. On the one hand, the availability of fine-grained well-
structured information makes automated merges easier, and error
messages more precise. On the other hand, the introduction of a his-
torical dimension raises new questions, because merging needs to
take place on the level of program construction as well as program
structure.

9 RELATEDWORK
The approach to program construction presented in this paper
presupposes a structured approach to program editing. Examples of
recent projects that take this approach are Lamdu and Unison, both
with a program syntax inspired by Haskell and a strong focus on
static typing, andCirru, which is a structured editor of s-expressions.
Program construction, however, has not been given a central role
in those projects. To our knowledge, the only other project which
has an explicitly defined semantics of program construction is
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Hazelnut[13], a project that focusses on the interaction between
program construction and static typing.

Mechanisms of recording program history are wide-spread in
mainstream software development, most notably in the form of
Version Control Systems. However, such systems typically operate
on unstructured text. A more structured approach to diffing is taken
by Miraldo et. al.[12]. Our approach differs because it puts program
modification central in the design, rather than trying to extract
information about program modification after the fact.

Finally, and most generally, some ideas analog to those presented
in this paper are captured in the design pattern of Event Sourcing,
described by Martin Fowler[5]. In that pattern, the idea is to capture
all changes to an application state as a sequence of events. That
is, the pattern captures the idea of construction-over-structure
in the domain of Enterprise Application Architecture rather than
programming.

10 CONCLUSIONS
Following from the observation that computer programs will be
changed, and that managing those changes themselves forms a
large part of a computer programmer’s work, Expressions of Change
presents a novel approach: to put the modifications themselves
central in the programming experience.

The results of the first step in that approach have been presented
in this paper: how to approach the design of the formalization of
programming construction? We have shown that important goals
in such design are: to enable intent-revealing primitives and suc-
cinct expression, while keeping a minimal footprint. Further, we
have shown various possible levels of combination, both within the
formalization of program construction and in its interaction with
program structure.

Finally, we have shown a particular formalization of program
construction for s-expressions, and how this minimal mechanism
allows for expression of programmer intent, and all 3 levels of
possible means of combination.
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